3.1.45 \(\int \frac {\cos ^2(e+f x) (c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx\) [45]

Optimal. Leaf size=45 \[ -\frac {\cos (e+f x) (c-c \sin (e+f x))^{5/2}}{3 c f \sqrt {a+a \sin (e+f x)}} \]

[Out]

-1/3*cos(f*x+e)*(c-c*sin(f*x+e))^(5/2)/c/f/(a+a*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {2920, 2817} \begin {gather*} -\frac {\cos (e+f x) (c-c \sin (e+f x))^{5/2}}{3 c f \sqrt {a \sin (e+f x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]^2*(c - c*Sin[e + f*x])^(3/2))/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

-1/3*(Cos[e + f*x]*(c - c*Sin[e + f*x])^(5/2))/(c*f*Sqrt[a + a*Sin[e + f*x]])

Rule 2817

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rule 2920

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rubi steps

\begin {align*} \int \frac {\cos ^2(e+f x) (c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx &=\frac {\int \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2} \, dx}{a c}\\ &=-\frac {\cos (e+f x) (c-c \sin (e+f x))^{5/2}}{3 c f \sqrt {a+a \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(120\) vs. \(2(45)=90\).
time = 0.35, size = 120, normalized size = 2.67 \begin {gather*} -\frac {c \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-1+\sin (e+f x)) \sqrt {c-c \sin (e+f x)} (6 \cos (2 (e+f x))+15 \sin (e+f x)-\sin (3 (e+f x)))}{12 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \sqrt {a (1+\sin (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]^2*(c - c*Sin[e + f*x])^(3/2))/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

-1/12*(c*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]]*(6*Cos[2*(e + f*x)
] + 15*Sin[e + f*x] - Sin[3*(e + f*x)]))/(f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*Sqrt[a*(1 + Sin[e + f*x])]
)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(140\) vs. \(2(39)=78\).
time = 0.15, size = 141, normalized size = 3.13

method result size
default \(\frac {\left (-c \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {3}{2}} \sin \left (f x +e \right ) \left (\cos ^{3}\left (f x +e \right )-\left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )+2 \left (\cos ^{2}\left (f x +e \right )\right )+3 \cos \left (f x +e \right ) \sin \left (f x +e \right )-4 \cos \left (f x +e \right )+\sin \left (f x +e \right )+1\right )}{3 f \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \left (\cos ^{2}\left (f x +e \right )-\cos \left (f x +e \right ) \sin \left (f x +e \right )+\cos \left (f x +e \right )+2 \sin \left (f x +e \right )-2\right )}\) \(141\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3/f*(-c*(sin(f*x+e)-1))^(3/2)*sin(f*x+e)*(cos(f*x+e)^3-cos(f*x+e)^2*sin(f*x+e)+2*cos(f*x+e)^2+3*cos(f*x+e)*s
in(f*x+e)-4*cos(f*x+e)+sin(f*x+e)+1)/(a*(1+sin(f*x+e)))^(1/2)/(cos(f*x+e)^2-cos(f*x+e)*sin(f*x+e)+cos(f*x+e)+2
*sin(f*x+e)-2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((-c*sin(f*x + e) + c)^(3/2)*cos(f*x + e)^2/sqrt(a*sin(f*x + e) + a), x)

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 84, normalized size = 1.87 \begin {gather*} \frac {{\left (3 \, c \cos \left (f x + e\right )^{2} - {\left (c \cos \left (f x + e\right )^{2} - 4 \, c\right )} \sin \left (f x + e\right ) - 3 \, c\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{3 \, a f \cos \left (f x + e\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/3*(3*c*cos(f*x + e)^2 - (c*cos(f*x + e)^2 - 4*c)*sin(f*x + e) - 3*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*
x + e) + c)/(a*f*cos(f*x + e))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}} \cos ^{2}{\left (e + f x \right )}}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(c-c*sin(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral((-c*(sin(e + f*x) - 1))**(3/2)*cos(e + f*x)**2/sqrt(a*(sin(e + f*x) + 1)), x)

________________________________________________________________________________________

Giac [A]
time = 0.47, size = 56, normalized size = 1.24 \begin {gather*} \frac {8 \, c^{\frac {3}{2}} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6}}{3 \, \sqrt {a} f \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

8/3*c^(3/2)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^6/(sqrt(a)*f*sgn(cos(-1/4*pi +
1/2*f*x + 1/2*e)))

________________________________________________________________________________________

Mupad [B]
time = 9.96, size = 83, normalized size = 1.84 \begin {gather*} -\frac {c\,\sqrt {-c\,\left (\sin \left (e+f\,x\right )-1\right )}\,\left (6\,\cos \left (e+f\,x\right )+6\,\cos \left (3\,e+3\,f\,x\right )+14\,\sin \left (2\,e+2\,f\,x\right )-\sin \left (4\,e+4\,f\,x\right )\right )}{24\,f\,\sqrt {a\,\left (\sin \left (e+f\,x\right )+1\right )}\,\left (\sin \left (e+f\,x\right )-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(e + f*x)^2*(c - c*sin(e + f*x))^(3/2))/(a + a*sin(e + f*x))^(1/2),x)

[Out]

-(c*(-c*(sin(e + f*x) - 1))^(1/2)*(6*cos(e + f*x) + 6*cos(3*e + 3*f*x) + 14*sin(2*e + 2*f*x) - sin(4*e + 4*f*x
)))/(24*f*(a*(sin(e + f*x) + 1))^(1/2)*(sin(e + f*x) - 1))

________________________________________________________________________________________